
Some Results on Search Complexity vs Accuracy
Mosur K. Ravishankar

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
rkm@cs:cmu:edu

ABSTRACT
This paper presents three different techniques applied in or devel-
oped during the 1996 Hub-4 broadcastnews transcription task. First,
an efficientshortest path graph searchalgorithm is applied to the
word lattice created by Viterbi search, producing a globally optimum
result. This reduces the word error rate by about 3-10% (relative),
depending on the test set. The execution time is at or close to real
time for most utterances. Second, asegmented N-best listgeneration
algorithm is described for producing compact N-best lists for very
long utterances. Finally, atemporal smoothingtechnique is com-
pared to deleted interpolation. On one test set, temporal smoothing
reduces the error rate by 3% for an 8% increase in search cost, while
the latter improves by 6% for a 50% increase in search cost.

1. Introduction
In this paper we describe the results of a number of search experi-
ments on the 1996 Hub-4 development and evaluation test sets. We
have also attempted to document issues that arose during that course
and their various resolutions. Some of the techniques were only
carried out on the development set and not used in the evaluation.

In what follows, three different techniques are presented and evalu-
ated. The shortest path graph search algorithm is described, along
with experimental results, in Section 2. The N-best list generation
problem and a new segmented N-best list algorithm are presented in
Section 3. Finally, a temporal smoothing technique that overcomes
noise by interpolating HMM state scores from neighboring frames
is described in Section 4.

2. Shortest Path Search
Most current speech recognition systems, including CMU’s, imple-
ment multiple search passes. The first pass is usually a full search
that produces a word lattice that then constrains the search space for
succeeding passes ([7, 6, 8, 9]).

The CMU evaluation decoder ([1]) is configured as follows. An
initial Viterbi beam search produces a single recognitionhypothe-
sis as well as a word lattice that includes word segmentations and
acoustic scores. Theshortest path graph searchproduces another
single, globally optimal hypothesis (using a trigram grammar) from
the word lattice. Finally, N-best lists are generated from the word
lattice.

In broadcast speech, the presence of background or channel noise,
spontaneous speaking styles, the unconstrained duration of utter-
ances, all tend to aggravate N-best list generation. There are a vary
large number of closely competing hypotheses. Therefore, the N-
best list may not actually be the best N hypotheses. The shortest path

graph search enables us to find the globally optimum word sequence
in the word lattice. This hypothesis is also injected into the N-best
list.

The final recognition results after rescoring the N-best list are pre-
sented in [1]. In this section we evaluate the shortest path search
algorithm. It is interesting since it is compact and easy to imple-
ment, computationally efficient, and produces results fairly close to
N-best rescoring, especially on clean speech. (It has previously been
used in the CMU Sphinx-II real-time decoder as a second, rescoring
step.)

2.1. Problem Formulation

The word lattice produced by the Viterbi beam search is transformed
into a Directed Acyclic Graph (DAG) as follows: A node in the graph
represents an instance of a wordw with a particular begin timet. We
denote such a node by(w;t). There can be a range of end-times for
this node. We create an edge from a node(wi; ti) to node(wj; tj)
iff tj � 1 is one of the end times of(wi; ti).

The cost associated with an edge from a node(wi; ti) to (wj; tj) is
formed from two components: an acoustic score or log-likelihood
and a language model log-probability. The former is the acoustic
score forwi from timeti to tj � 1, withwj being the phonetic right
context. For the language model log-probability, let us first consider
the case of a simple bigram grammar. The log-probability is simply
log(P (wjjwi)). The total edge cost is the weighted sum of the two1.
It is independent of other edges in the DAG.

The DAG has distinguishedstartandendnodes corresponding to the
sentence initial and sentence final silence words, respectively. We
compute the best (least cost) path through the DAG from thestart
node to theendnode using any of the standard shortest-path graph
algorithms. This gives the single best recognitionhypothesis for the
utterance, given the word lattice.

Longer distance language models can be handled, in principle, by
replicating nodes and additional edges as necessary. This is still
practical with trigram grammars, but with 4-gram or higher-order
grammars the growth in the DAG size can become unmanageable.
(With a trigram model, in fact, it is not actually necessary to phys-
ically expand the DAG. One can reformulate the problem in terms
of an edge cost given the predecessor edge, and applying language
model probabilitiesdynamically.)

The best path search has a number of advantages:

1Usually, the language model log-probability is weighted by alanguage
weightwhose optimum value is determined empirically.



� The result is globally optimum.

� The algorithm is implemented efficiently and compactly.

� There is no pruning, unlike in the case of beam search or A*
search algorithms. This is very useful in empirically optimizing
parameters such as languageweight and word insertion penalty.
When any such parameter is varied in a search algorithm that
employs pruning, theeffectivepruning threshold, and hence
the active search subspace, is changed significantly. Thus,
comparisons of results with different parameter values can be
misleading. Since the shortest path algorithm searches the
entire DAG with no pruning, the optimum parameter values
can be determined exactly.

The practical applicability of this algorithm is occasionally limited,
however, by the size of the DAG. Noisy speech can result in very large
DAGs. A second factor is the presence ofnoise wordmodels (such
as silence and filled pauses) in the Sphinx-3 system. Noise words
are inserted in a manner transparent to the n-gram language model.
In creating the DAG, additional links must be created to bypass
noise word nodes, increasing the size of the DAG significantly. Our
implementation aborts a DAG search if pre-specified computational
or memory limits are exceeded.

2.2. Experimental Results
As described in [1], the CMU evaluation run consisted of two phases.
In phase-1, the test set was decoded using conventional Viterbi beam
search, followed by the best path DAG search algorithm. The result
of the latter was used for unsupervised MLLR adaptation.

In phase-2, the adapted acoustic models were used for decoding.
In addition, the context-dependent (CD) state output probabilities
were interpolated with corresponding context-independent (CI) ones
to produce smoother models ([4]). Once again, a complete Viterbi
beam search was followed by DAG search. An N-best rescoring
process was the final step; the best path search results were added
to the N-best lists before the rescoring. (Also, the DAG search and
N-best rescoring steps used different trigram language models and
weights, which were optimized independently.)

We present the word error rates (WER) of each step in each phase
of the evaluation run. In particular, we focus on the performance of
the best path search relative to the other steps. Tables 1 and 2 show
the word error rates of individual search steps in the partitioned and
unpartitioned evaluations, respectively.

Tot F0 F1 F2 F3 F4 F5 FX
Vit 38.8 28.8 33.8 44.9 45.1 45.6 45.2 64.6
Dag 37.3 27.2 32.4 43.2 43.3 45.7 45.8 61.8

Phase-1 (Before Adaptation)
Tot F0 F1 F2 F3 F4 F5 FX

Vit 36.3 27.2 33.2 40.4 37.7 44.1 37.1 58.5
Dag 35.5 26.1 32.3 39.7 37.3 43.9 38.1 57.8
Nbs 34.9 25.8 32.1 38.6 36.6 43.7 36.5 55.8

Phase-2 (After Adaptation)
(Vit: Viterbi; Dag: Best path; Nbs: N-best search)

Table 1: WER of individual steps in Hub-4 Partitioned Evaluation.

Tot F0 F1 F2 F3 F4 F5 FX
Vit 39.1 27.2 34.4 45.8 50.0 45.6 40.8 66.7
Dag 37.8 26.0 33.5 44.7 48.4 45.0 40.8 62.9

Phase-1 (Before Adaptation)
Tot F0 F1 F2 F3 F4 F5 FX

Vit 37.3 25.7 34.0 42.6 49.5 43.0 37.5 60.9
Dag 36.5 24.8 33.7 39.8 48.8 42.5 38.8 60.3
Nbs 35.9 24.7 33.1 39.1 48.4 42.1 35.5 58.3

Phase-2 (After Adaptation)
(Vit: Viterbi; Dag: Best path; Nbs: N-best search)

Table 2: WER of individual steps in Hub-4 Unpartitioned Evaluation.

Overall, we see an improvement in WER as a result of the best path
search. However, the improvement varies with the test condition.
It is most prominent in the clean, or F0 condition, where it comes
closest to N-best rescoring. The performance improvement is more
variable in the noisier conditions.

We now look at the execution speed of the best path DAG search al-
gorithm. Figure 1 shows the distribution of the normalized execution
time (CPU time/utterance duration) for each utterance2. It is a com-
bined graph for both phases of both the partitioned andunpartitioned
evaluations.

0

200

400

600

800

1000

1200

0 50 100 150 200 250 300

N
o.

 o
f 

ut
te

ra
nc

es

CPU time (x Realtime)

Execution time

Figure 1: Best Path Search Execution Time Distribution

Most utterances are processed at or close to real time. The utterances
with very long execution times are typically noisy, or badly articu-
lated speech. The word lattice is very large in these cases to begin
with.

3. N-best List Generation
The CMU evaluation system included N-best list generation ([7,
6]) for rescoring with higher-order N-gram language models. The
unconstrained length of utterances in the broadcast news test implies
that N-best lists must be extremely long in order to improve the
chances of the correct transcription being included in the list. In
short, the list size must grow exponentially with utterance length to

2The experiments were run on high end DEC Alpha and Pentium Pro
workstations.



maintain a constant rate. We considered a number of options to deal
with this situation:

1. Using a front-end segmenter ([5]) to break long utterances into
shorter segments.

2. Decoding complete utterances in the Viterbi pass, but using
silence information obtained thereby to identify subsegment
breaks during N-best generation.

3. Generatingsegmented N-best lists; segment breaks are based
onarticulation points(borrowing a term from graph theory) in
the word lattice. (See Section 3.1 below.)

In all cases, the shorter the length of the segments, the better the
quality of the N-best lists. However, segment breaks also cause
breaks in linguistic context, and occasionally within a word. The
loss of relevant context information can introduce additional errors
when N-best lists for each segment are rescored independently. This
problem becomes more acute as the average segment size shrinks.
The obvious solution is to rescore N-best lists in the context of
neighboring ones. But because of time and resource constraints
we were not able to experiment with such possibilities before the
evaluation deadline.

Ultimately, because of time constraints, we settled on the front-
end segmentation as the simplest scheme. A front-end segmenter
is more prone to errors, compared to HMM-based models that can
detect silences very accurately. To minimize errors introduced by the
segmenter and by linguistic context breaks, we settled on a relatively
long average segment duration of about 30 sec.

Though it was not used in the evaluations, we did implement the
segmented N-best list generation algorithm, which has some simi-
larities to the IBM envelope search ([11]). It can produce compact,
low error N-best lists with efficiency and is described below.

3.1. Segmented N-best Lists
This algorithm first constructs a DAG from the word lattice produced
by the Viterbi search, as described in Section 2. The DAG provides
candidates for paths to be explored during the N-best search. The
result of the search is a set of segmentations of the utterance, and
separate N-best lists within each segment. (In principle, segments
can be as short as one word.) This allows the generation of compact
yet sufficiently rich N-best lists. Furthermore, the segmentation leads
to greater efficiency in terms of processor and memory usage.

Like all N-best algorithms, this one works by maintaining a number
of partial paths and repeatedly expanding the best one by one word.
In this case, several lists of partial hypotheses are maintained, one
list for each possible end time in the DAG. Each list is sorted in
descending order of the partial path score. The lists are initialized
with the utterance initial silence and all words that can succeed it (as
determined by the DAG).

The algorithm proceeds in a time-synchronous manner, repeatedly
expanding the best partial path in the earliest end-time list that is non-
empty. However, whenever the algorithm moves in time to a new
non-empty list, it first checks if that is also the last non-empty list.
If so, it marks anarticulation point, and hence a segment boundary.
That is, all complete paths must pass through one of the partial paths
ending in this list. A segment N-best list is generated at this point
and the list compacted to include only the unique grammar states.

Since all future extension to partial paths must proceed from one of
these, there is no need to maintain duplicate grammar states. The
complete algorithm follows:

/* plist[t] = partial path list with end time=t */
for (t = 1 to T) { /* T is utterance length */

/* Look for articulation point at t */
if (plist[t+1]..plist[T] are all empty) {

output plist[t]; /* Nbest list for segment */

compact plist[t]; /* Retain only unique grammar
states; e.g. last two words with trigram LM */
/* Start of new segment */

}

/* Expand paths in plist[t]; usual N-best step */
while (plist[t] not empty) {

p = best partial path in plist[t];
pop p off plist[t];
n = DAG node corresponding to final word in p;

for (each successor node n’ to n in DAG) {
for (each end time t’ for n’) {

p’ = new partial path by appending n’ to p;
compute path score for p’; /* add acoustic

and LM scores for n’ */
insert p’ in plist[t’];

}
}

}
}

A pruningbeamwidthis employed to consider only the more promis-
ing paths. The beam is applied to each N-best list independently.

The significant feature in the above algorithm is the compaction
step after a segment N-best list is output at an articulation point. It
prevents the total number of partial hypotheses from growing expo-
nentially with the length of the utterance. The resulting efficiency
allows a greater number of hypotheses to be explored in each seg-
ment. Yet, by treating each segment independently, the overall size
of the list is kept compact.

This algorithm has been evaluated on the 1994 Hub1 evaluation test
set using the standard 20K vocabulary. The lattice error rate on this
set is 5.5%. The straightforward N-best list (unsegmented), with
a list size of 500, has about 8.4% error rate. This corresponds to
an oracle somehow chosing the best hypothesis from each N-best.
The segmented N-best algorithm presented here has an error rate of
7.3%, a relative improvement of about 13%. At the same time, the
segmented N-best files are about an order of magnitude smaller than
the unsegmented ones.

4. Temporal Smoothing of State Scores
One of the observations while testing the Sphinx-3 continuousacous-
tic models on the H4 development set was that some word instances
failed to even show up in the word lattice. They were pruned out
completely. However, the same instances were decoded successfully
with semi-continuous acoustic models. This basically pointed out
a mismatch between the sharp and well-defined continuous HMM
models, and the noisy speech in the broadcast news data.

Two obvious ways to improve the recognition were the following:

� Widening the search beamwidth to reduce pruning errors.



� Smoothing the acoustic models, for example, by interpolat-
ing context dependent (CD) state scores with corresponding
context independent ones ([4]).

The latter showed some improvement in recognitionaccuracy. How-
ever, in both cases, the effect was to increase the number of active
models, and slow down the search significantly.

But there is also a third alternative. If, in fact, the input speech is
noisy, perhaps smoothing the input data instead of the models can
improve performance. The basic idea is to smooth HMM state scores
in one frame by interpolating them with corresponding scores from
a neighboring frame:

P
0(s; t) = �P (s; t) + (1� �)P (s; t� 1)

where,s is any HMM state,P (s; t) is its unsmoothed state score at
time t, P 0 is the corresponding smoothed score, and� is an empiri-
cally determined constant (0<= � <= 1). In a sense, this sends the
speech through a low-pass filter, removing noise from it. Interest-
ingly, we found that such smoothing provides some improvement in
recognitionaccuracy. Moreover, the search speed is affected much
less than in the alternatives mentioned earlier.

4.1. Experimental Results
We applied each of the alternatives considered above in the Viterbi
beam search. The test sets were the F0 and F1 conditions of the 1996
Hub-4 development set. Specifically, four different configurations
were tried:

1. BASE: Baseline acoustic models with normal pruning
beamwidth settings (the same as in the evaluations).

2. WIDE: Baseline acoustic models with wider beamwidth.

3. CD-CI: Interpolation of context-dependent and independent
state scores using baseline acoustic models,and normal pruning
beamwidth.

4. TIME: Temporal smoothing of state scores using baseline
acoustic models, and normal pruning beamwidth.

In Table 3 we show the word error rates and the number of HMM
models evaluated per frame in each of the four experiments above.
On F0, simply widening the beamwidth is utterly useless. There

F0 F1
WER HMM/Frm WER HMM/Frm

BASE 18.8 61K 36.2 81K
WIDE 18.6 106K 36.2 143K
CD-CI 17.6 92K 36.5 137K
TIME 18.2 65K 36.1 87K

Table 3: Performance on 1996 H4 Dev. Set With Different Smooth-
ing and Beamwidth Configurations.

is about a 75% increase in search complexity for no significant im-
provement in recognitionaccuracy. The surprising result is that
temporal smoothing does much better, (though not as well as CD-CI
smoothing) with less than 10% increase in search complexity. The
WER on the F1 condition is unaffected by any of the techniques.

We note that we did not employ this heuristic in the evaluations since
we did not have sufficient time to evaluate its utility or robustness.

5. Summary
We have described three different techniques that were used during
the 1996 Hub-4 evaluations or tested during the development process.
We have seen that the shortest path graph search algorithm can be
used to efficiently generate a globally optimum hypothesis. On
the Hub-4 task, it reduces word error rate consistently by about
3-10% while mostly running at or close to real time. It is also
useful in optimizing other global search parameters such as language
weightand word insertion penalty. We have also shown that temporal
smoothing of state output probabilities results in about 3% reduction
in WER on the F0 condition of the development set with less than
10% increase in computational load.

Acknowledgements. This research was sponsored by the Depart-
ment of the Navy, Naval Research Laboratory under Grant No.
N00014-93-1-2005.

I would like to thank Paul Placeway, Roni Rosenfeld, Eric Thayer,
and other members of the Sphinx group for their comments on the
contents of this paper.

References
1. Placeway, P.et al, The 1996 Hub-4 Sphinx-3 System, ARPA

SLT Workshop, Feb. 1997.

2. Seymore, K., Chen, S., Eskenazi, M., and Rosenfeld, R.,Lan-
guage and Pronunciation Modeling in the 1996 Hub 4 Evalu-
ation, ARPA SLT Workshop, Feb. 1997.

3. Parikh, V., Raj, B., and Stern, R.Sphinx-III: A daptation and
Compensation for the Hub4-96 Task, ARPA SLT Workshop,
Feb. 1997.

4. Huang, X.D., Hwang, M-Y., Jiang, L., and Mahajan, M.,
Deleted Interpolation and Density Sharing for Continuous Hid-
den Markov Models, ICASSP-96.

5. Siegler, M., Jain, U., Raj, B., and Stern, R.Automatic Segmen-
tation, Classification and Clustering Broadcast News Audio,
ARPA SLT Workshop, Feb. 1997.

6. Alleva, F., Huang, X., and Hwang, M.An Improved Search
Algorithm for Continuous Speech Recognition. ICASSP, 1993.

7. Schwartz, R. and Chow, Y.L.The Optimal N-Best Algorithm:
An Efficient Procedurefor Finding Multiple Sentence Hypothe-
ses.ICASSP, Apr. 1990.

8. Woodland, P.C. Leggetter, C.J., Odell, J.J., Valtchev, V. and
Young, S.J.The Development of the 1994 HTK Large Vocabu-
lary Speech Recognition System., ARPA SLT Workshop, Jan.
1995, pp 104-109.

9. Murveit, H., Butzberger, J., Digalakis, V. and Weintraub,
M. Large-Vocabulary Dictation Using SRI’s Decipher Speech
Recognition System: Progressive Search Techniques.ICASSP,
Apr. 1993, vol.II, pp.II-319 – II-322.

10. Leggetter, C.J. and Woodland, P.C.Flexible Speaker Adap-
tation Using Maximum Likelihood Linear Regression, ARPA
SLT Workshop, Jan. 1995, pp 110-115.

11. Gopalakrishnan, P.S., Bahl, L.R., and Mercer, R.L.,A Tree
Search Strategy for Large-Vocabulary Continuous Speech
Recognition, ICASSP, May 1995, pp 572-575.


